Top-Down Parsing

Parsing:

* Context-free syntax is expressed with a context-free grammar.
* The process of discovering a derivation for some sentence.

Recursive-Descent Parsing

e 1. Construct the root with the starting symbol of the grammar.

e 2. Repeat until the fringe of the parse tree matches the input string:

* Assuming a node labelled A, select a production with A on its left-hand-side and, for each
symbol on its right-hand-side, construct the appropriate child.

 When a terminal symbol is added to the fringe and it doesn’t match the fringe, backtrack.
* Find the next node to be expanded.

The key is picking the right production in the first step: that choice
should be guided by the input string.

Example: Parse x-2*y

Example:

1. Goal — Expr 5. Term — Term * Factor
2. Expr — Expr + Term 6. | Term / Factor
3. | Expr—Term 7. | Factor

4, | Term 8. Factor — number

9. | id

Rule

Sentential Form

Input

Example: Parse x-2*y

Example:

1. Goal — Expr

2. Expr — Expr + Term
| Expr—Term 7

3.
4.

| Term

5. Term — Term * Factor

6. | Term / Factor
. | Factor

8. Factor — number

9. | id

Rule Sentential Form | Input

- Goal | X — 2*y

1 Expr | X — 2*y

2 Expr + Term | X — 2*y

4 Term + Term | X — 2*y

7 Factor + Term | X — 2%y

9 id + Term | X — 2*y
Fail id + Term X |—2*y
Back | Expr | X — 2*y
3 Expr — Term | X — 2*y

4 Term — Term | X — 2*y

7 Factor — Term | X — 2*y

9 id — Term | X — 2*y
Match |id— Term X—|2*y
7 id — Factor X —|2*y

9 id — num X — | 2*y
Fail iId — num X—2|%*y
Back |id—Term X —|2*y
5 id — Term * Factor | x—|2*y

7 iId — Factor * Factor | x—|2*y

8 id — num * Factor X —|2*y
match | id — num * Factor X—2*|y
9 id — num * id X—2%|y
match | id—num *id X—2%y |

Example: Parse x-2*y

Example:
1. Goal — Expr 5. Term — Term * Factor
2. Expr — Expr + Term 6. | Term / Factor
3. | Expr—Term 7. | Factor
4, | Term 8. Factor — number

9. [id

Rule | Sentential Form Input
- Goal | x — 2*y
1 EXpr | x — 2%y
2 Expr + Term | x — 2%y
2 Expr + Term + Term | x —2*y
2 Expr + Term + Term + Term | x = 2%y
2 Expr + Term + Term + ... + Term | | x — 2%y

e Wrong choice leads to non-termination!
e This is a bad property for a parser!
e Parser must make the right choice!

Left-Recursive Grammars

* Definition: A grammar is left-recursive if it has a non-terminal symbol
A, such that there is a derivation A=*Aq, for some string a.

* A left-recursive grammar can cause a recursive-descent parser to go
into an infinite loop.

Eliminating left-recursion:

* In many cases, it is sufficient to replace A—Aa [b with A—> bA'
and A'—>adA’' [¢

 Example:

Sum — Sum+number | number
would become:

Sum — number Sum'

Sum' — +number Sum' | ¢

Eliminating Left Recursion

Example: Applying the transformation to the Grammar of the
1. Goal — Expr 5. Term — Term * Factor Example we get:

2. Expr — Expr + Term 6. | Term / Factor ,

3. | Expr—Term 7. | Factor Expr — Term Expr

4. | Term g' F"Ct"rﬁ;’;’é’mber Expr' — +Term Expr' | — Term Expr' | ¢

Term — Factor Term'
Term' — *Factor Term' | / Factor Term' [¢
(Goal — Expr and Factor — number [id
remain unchanged)
Non-intuitive, but it works!

Where are we?

 \We can produce a top-down parser, but:
— If it picks the wrong production rule it has to backtrack.

 |dea: look ahead in input and use context to
pick correctly.

« How much lookahead is needed?
— In general, an arbitrarily large amount.

— Fortunately, most programming language constructs
fall into subclasses of context-free grammars that
can be parsed with limited lookahead.

Predictive Parsing

« Basic idea:

— For any production A — a/b we would like to have a distinct way of choosing the correct production
to expand.

e F/RST sets:

— For any symbol A, FIRST(A) is defined as the set of terminal symbols that appear as the first symbol
of one or more strings derived from A.

E.Q. Expr— Term Expr’
Expr'— +Term Expr’ | — Term Expr' | &
Term — Factor Term’
Term’ — *Factor Term’ |/ Factor Term’ | &
(Goal — Expr and Factor — number | id

FIRST(Expr')={+,-,&}, FIRST(Term')={*/ ¢}, FIRST(Factor)={number, id}

The LL(1) property

*If A—=>a and A—b both appear in the grammar, we would
like to have: FIRST(a)NFIRST(b) = O.

* This would allow the parser to make a correct choice with
a lookahead of exactly one symbol!

Left Factoring

What if my grammar does not have the LL(1) property?
Sometimes, we can transform a grammar to have this property.

Algorithm:

1. For each non-terminal A, find the longest prefix, say a, common to
two or more of Its alternatives

2. If a=¢ then replace all the A productions, A—ab,/ab,jaby/l.../ab, [y,
where y IS anything that does not begin with a, with A—aZ | v and

Z—b,[b,b4.../b,
Repeat the above until no common prefixes remain
Example: A — ab, /ab,/ab;would become A — aZand Z — b,/0,/b,

Note the graphical representation:
@ (8
e B2
@ (&)

Example

Goal — Expr Term — Factor * Term
Expr — Term + Expr | Factor/ Term
[Term — Expr | Factor
[/ Term Factor 7 _glumber

/

We have a problem with the different rules for Expras well as those for 7erm. In
both cases, the first symbol of the right-hand side is the same (7ermand Factor,

respectively). E.g.:
FIRST(Term)=FIRST(Term)NFIRST(Term)={ number, 1a}.
FIRST(Factor)=FIRST(Factor)NFIRST(Factor)={ number, 1d}.

Applying left factoring:

Expr — Term Expr’ FIRST(+)={+}, FIRST(-)={-}, FIRST(s)={ &},
Expr'— + Expr[— Expr /¢ || FIRST(=)N FIRST(+) " FIRST(c)= =

Term — Factor Term” FIRST(*)={*}; FIRST(/)={A; FIRST(c)={¢&};
Term™— *Term [/ Term [¢ || FIRST(*)N FIRST(/) N FIRST(e)= =J

Example (cont.)

1. Goal — Expr

2. Expr — Term Expr’
3. Expr'— + Expr

4. /- Expr

5. /&

6. Term — Factor Term’
/. Term’— * Term

8. [/ Term

9. /&

10. Factor — number
11. /id

Rule

Sentential Form

Input

The next symbol
determines each choice

correctly. No backtracking

needed.

Example (cont.)

1. Goal — Expr Rule | Sentential Form Input
2. Expr — Term Expr’ - E)‘(’sr' : X ;:z
3. EXpr'— + Expr 2 | Term Expr’ | x — 2%y
4. /- Expr 6 | Factor Term” Expr’ | x — 2%y
5 /8 11 id Term” Expr’ | x — 2%y
; Match | id Term” Expr’ X |—2*y
6. Term — Factor Term 9 id € Expr’ X | - 2%y
/. Term™— * Term 4 |id—Expr X | —2*y
8. // Term Match | id — Expr X —| 2%y
9 /8 2 id — Term Expr’ X —|2*y
’ 6 id — Factor Term” Expr’ X —| 2%y
10. Factor — number 10 id — num Term” Expr’ X — | 2%y
11. //'0’ Match | id — num Term” Expr’ Xx—2*y
7 id —num * Term Expr’ X—2|*y
Match | id — num * Term Expr’ X—2*|y
6 id —num * Factor Term” Expr” | x —2* |y
Th bol 11 | id—num *id Term Expr’ X—2%|y
e neXt Sym O Match | id — num * id Term” Expr’ X — 2%y |
- - 9 id —num * id Expr’ X — 2%y |
determines each choice e —

correctly. No backtracking

needed.

Conclusion

Top-down parsing:
— recursive with backtracking (not often used in practice)
— recursive predictive

Nonrecursive Predictive Parsing is possible too: maintain a stack
explicitly rather than implicitly via recursion and determine the
production to be applied using a table (Aho, pp.186-190).

Given a Context Free Grammar that doesn’t meet the LL(1) condition, it
IS undecidable whether or not an equivalent LL(1) grammar exists.

Next time: Bottom-Up Parsing

