
Top-Down Parsing

Parsing:

• Context-free syntax is expressed with a context-free grammar.

• The process of discovering a derivation for some sentence.

Recursive-Descent Parsing

• 1. Construct the root with the starting symbol of the grammar.

• 2. Repeat until the fringe of the parse tree matches the input string:
• Assuming a node labelled A, select a production with A on its left-hand-side and, for each

symbol on its right-hand-side, construct the appropriate child.

• When a terminal symbol is added to the fringe and it doesn’t match the fringe, backtrack.

• Find the next node to be expanded.

The key is picking the right production in the first step: that choice
should be guided by the input string.

Example: Parse x-2*y
Example:
1. Goal  Expr 5. Term  Term * Factor
2. Expr  Expr + Term 6. | Term / Factor
3. | Expr – Term 7. | Factor
4. | Term 8. Factor  number

9. | id

Rule Sentential Form Input

Example: Parse x-2*y
Example:
1. Goal  Expr 5. Term  Term * Factor
2. Expr  Expr + Term 6. | Term / Factor
3. | Expr – Term 7. | Factor
4. | Term 8. Factor  number

9. | id

Rule Sentential Form Input
- Goal | x – 2*y

1 Expr | x – 2*y

2 Expr + Term | x – 2*y

4 Term + Term | x – 2*y

7 Factor + Term | x – 2*y

9 id + Term | x – 2*y

Fail id + Term x | – 2*y

Back Expr | x – 2*y

3 Expr – Term | x – 2*y

4 Term – Term | x – 2*y

7 Factor – Term | x – 2*y

9 id – Term | x – 2*y

Match id – Term x – | 2*y

7 id – Factor x – | 2*y

9 id – num x – | 2*y

Fail id – num x – 2 | *y

Back id – Term x – | 2*y

5 id – Term * Factor x – | 2*y

7 id – Factor * Factor x – | 2*y

8 id – num * Factor x – | 2*y

match id – num * Factor x – 2* | y

9 id – num * id x – 2* | y

match id – num * id x – 2*y |

• Wrong choice leads to non-termination!

• This is a bad property for a parser!

• Parser must make the right choice!

Rule Sentential Form Input
- Goal | x – 2*y

1 Expr | x – 2*y

2 Expr + Term | x – 2*y

2 Expr + Term + Term | x – 2*y

2 Expr + Term + Term + Term | x – 2*y

2 Expr + Term + Term + … + Term | x – 2*y

Example: Parse x-2*y

Example:
1. Goal  Expr 5. Term  Term * Factor
2. Expr  Expr + Term 6. | Term / Factor
3. | Expr – Term 7. | Factor
4. | Term 8. Factor  number

9. | id

Left-Recursive Grammars

• Definition: A grammar is left-recursive if it has a non-terminal symbol
A, such that there is a derivation AAa, for some string a.

• A left-recursive grammar can cause a recursive-descent parser to go
into an infinite loop.

Eliminating left-recursion:

• In many cases, it is sufficient to replace AAa | b with A bA'
and A' aA' | 

• Example:

Sum  Sum+number | number

would become:

Sum  number Sum'

Sum'  +number Sum' | 

Eliminating Left Recursion

Applying the transformation to the Grammar of the
Example we get:

Expr  Term Expr'
Expr'  +Term Expr' | – Term Expr' | 
Term  Factor Term'
Term'  *Factor Term' | / Factor Term' | 
(Goal  Expr and Factor  number | id

remain unchanged)
Non-intuitive, but it works!

Example:
1. Goal  Expr 5. Term  Term * Factor
2. Expr  Expr + Term 6. | Term / Factor
3. | Expr – Term 7. | Factor
4. | Term 8. Factor  number

9. | id

Where are we?

• We can produce a top-down parser, but:

– if it picks the wrong production rule it has to backtrack.

• Idea: look ahead in input and use context to

pick correctly.

• How much lookahead is needed?

– In general, an arbitrarily large amount.

– Fortunately, most programming language constructs

fall into subclasses of context-free grammars that

can be parsed with limited lookahead.

Predictive Parsing

• Basic idea:

– For any production A  a | b we would like to have a distinct way of choosing the correct production

to expand.

• FIRST sets:

– For any symbol A, FIRST(A) is defined as the set of terminal symbols that appear as the first symbol

of one or more strings derived from A.

E.g. Expr  Term Expr'

Expr'  +Term Expr' | – Term Expr' | 
Term  Factor Term'
Term'  *Factor Term' | / Factor Term' | 
(Goal  Expr and Factor  number | id

FIRST(Expr')={+,-,}, FIRST(Term')={*,/,}, FIRST(Factor)={number, id}

The LL(1) property

• If Aa and Ab both appear in the grammar, we would
like to have: FIRST(a)FIRST(b) = .

• This would allow the parser to make a correct choice with
a lookahead of exactly one symbol!

Left Factoring
What if my grammar does not have the LL(1) property?

Sometimes, we can transform a grammar to have this property.

Algorithm:

1. For each non-terminal A, find the longest prefix, say a, common to

two or more of its alternatives

2. if a then replace all the A productions, Aab1|ab2|ab3|...|abn|,

where  is anything that does not begin with a, with AaZ |  and

Zb1|b2|b3|...|bn

Repeat the above until no common prefixes remain

Example: A  ab1 | ab2 | ab3 would become A  aZ and Z  b1|b2|b3

Note the graphical representation:

A

ab3

ab1

ab2

A

b3

b2

b1

aZ

Example
Goal  Expr Term  Factor * Term
Expr  Term + Expr | Factor / Term

| Term – Expr | Factor
| Term Factor  number

| id

We have a problem with the different rules for Expr as well as those for Term. In

both cases, the first symbol of the right-hand side is the same (Term and Factor,

respectively). E.g.:
FIRST(Term)=FIRST(Term)FIRST(Term)={number, id}.
FIRST(Factor)=FIRST(Factor)FIRST(Factor)={number, id}.

Applying left factoring:

Expr  Term Expr´ FIRST(+)={+}; FIRST(–)={–}; FIRST()={};

Expr´ + Expr | – Expr |  FIRST(–) FIRST(+)  FIRST()= =

Term  Factor Term´ FIRST(*)={*}; FIRST(/)={/}; FIRST()={};

Term´ * Term | / Term |  FIRST(*) FIRST(/)  FIRST()= =

Example (cont.)
Rule Sentential Form Input

1. Goal  Expr

2. Expr  Term Expr´

3. Expr´ + Expr

4. | - Expr

5. | 

6. Term  Factor Term´

7. Term´ * Term

8. | / Term

9. | 

10. Factor  number

11. | id

The next symbol

determines each choice

correctly. No backtracking

needed.

Example (cont.)

Rule Sentential Form Input
- Goal | x – 2*y

1 Expr | x – 2*y

2 Term Expr´ | x – 2*y

6 Factor Term´ Expr´ | x – 2*y

11 id Term´ Expr´ | x – 2*y

Match id Term´ Expr´ x | – 2*y

9 id  Expr´ x | – 2*y

4 id – Expr x | – 2*y

Match id – Expr x – | 2*y

2 id – Term Expr´ x – | 2*y

6 id – Factor Term´ Expr´ x – | 2*y

10 id – num Term´ Expr´ x – | 2*y

Match id – num Term´ Expr´ x – 2 | *y

7 id – num * Term Expr´ x – 2 | *y

Match id – num * Term Expr´ x – 2* | y

6 id – num * Factor Term´ Expr´ x – 2* | y

11 id – num * id Term Expr´ x – 2* | y

Match id – num * id Term´ Expr´ x – 2*y |

9 id – num * id Expr´ x – 2*y |

5 id – num * id x – 2*y |

1. Goal  Expr

2. Expr  Term Expr´

3. Expr´ + Expr

4. | - Expr

5. | 

6. Term  Factor Term´

7. Term´ * Term

8. | / Term

9. | 

10. Factor  number

11. | id

The next symbol

determines each choice

correctly. No backtracking

needed.

Conclusion

• Top-down parsing:

– recursive with backtracking (not often used in practice)

– recursive predictive

• Nonrecursive Predictive Parsing is possible too: maintain a stack

explicitly rather than implicitly via recursion and determine the

production to be applied using a table (Aho, pp.186-190).

• Given a Context Free Grammar that doesn’t meet the LL(1) condition, it

is undecidable whether or not an equivalent LL(1) grammar exists.

• Next time: Bottom-Up Parsing

